Industrial engineering is a branch of engineering that concerns the development, improvement, implementation and evaluation of integrated systems of people, money, knowledge, information, equipment, energy, material and process. It also deals with designing new prototypes to help save money and make the prototype better. Industrial engineering draws upon the principles and methods of engineering analysis and synthesis, as well as mathematical, physical and social sciences together with the principles and methods of engineering analysis and design to specify, predict and evaluate the results to be obtained from such systems. In lean manufacturing systems, Industrial engineers work to eliminate wastes of time, money, materials, energy, and other resources.Industrial engineering is also known as operations management, management science, systems engineering, or manufacturing engineering; a distinction that seems to depend on the viewpoint or motives of the user. Recruiters or educational establishments use the names to differentiate themselves from others. In healthcare, for example, industrial engineers are more commonly known as management engineers or health systems engineers.The term "industrial" in industrial engineering can be misleading. While the term originally applied to manufacturing, it has grown to encompass virtually all other industries and services as well. The various topics of concern to industrial engineers include management science, financial engineering, engineering management, supply chain management, process engineering, operations research, systems engineering, ergonomics, value engineering and quality engineering.Examples of where industrial engineering might be used include designing a new loan system for a bank, streamlining operation and emergency rooms in a hospital, distributing products worldwide (referred to as Supply Chain Management), and shortening lines (or queues) at a bank, hospital, or a theme park. Industrial engineers typically use computer simulation, especially discrete event simulation, for system analysis and evaluation.
Power engineering, also called power systems engineering, is a subfield of engineering that deals with the generation, transmission and distribution of electric power as well as the electrical devices connected to such systems including generators, motors and transformers. Although much of the field is concerned with the problems of three-phase AC power - the standard for large-scale power transmission and distribution across the modern world - a significant fraction of the field is concerned with the conversion between AC and DC power as well as the development of specialised power systems such as those used in aircraft or for electric railway networks.Electricity became a subject of scientific interest in the late 17th century with the work of William Gilbert. Over the next two centuries a number of important discoveries were made including the incandescent lightbulb and the voltaic pile. Probably the greatest discovery with respect to power engineering came from Michael Faraday who in 1831 discovered that a change in magnetic flux induces an electromotive force in a loop of wire—a principle known as electromagnetic induction that helps explain why generators and transformers work.In 1881 two electricians built the world's first power station at Godalming in England. The station employed two waterwheels to produce an alternating current that was used to supply seven Siemans arc lamps at 250 volts and thirty-four incandescent lamps at 40 volts. However supply was intermittent and in 1882 Thomas Edison and his company, The Edison Electric Light Company, developed the first steam-powered electric power station on Pearl Street in New York City. The Pearl Street Station consisted of several generators and initially powered around 3,000 lamps for 59 customers. The power station used direct current and operated at a single voltage. Since the direct current power could not be easily transformed to the higher voltages necessary to minimise power loss during transmission, the possible distance between the generators and load was limited to around half-a-mile (800 m).
Modern automotive engineering is a branch of vehicle engineering, incorporating elements of mechanical, electrical, electronic, software and safety engineering as applied to the design, manufacture and operation of motorcycles, automobiles, buses and trucks and their respective engineering subsystems.Automotive engineers are involved in almost every aspect of designing cars and trucks, from the initial concepts right through to manufacturing them.
Broadly speaking, automotive engineers are separated into three main streams: product engineering, development engineering and manufacturing engineering.Product engineer (also called design engineer), that would design components/systems (i.e brake engineer and battery engineer). This engineer designs and tests a part, seeing that it meets all its requirements (i.e. the shock), performs as required, material meets desired durability and so on. Development engineer, that engineers the attributes of the automobile. This engineer may provide to the design engineer what spring rate he/she requires to provide the "ride" characteristics required for the automobile to perform as desired, etc. Manufacturing engineer, determines how to make it.In Toyota, for example, manufacturing engineering is regarded as a more prestigious career path than designing and developing the cars.