Industrial engineering is a branch of engineering that concerns the development, improvement, implementation and evaluation of integrated systems of people, money, knowledge, information, equipment, energy, material and process. It also deals with designing new prototypes to help save money and make the prototype better. Industrial engineering draws upon the principles and methods of engineering analysis and synthesis, as well as mathematical, physical and social sciences together with the principles and methods of engineering analysis and design to specify, predict and evaluate the results to be obtained from such systems. In lean manufacturing systems, Industrial engineers work to eliminate wastes of time, money, materials, energy, and other resources.Industrial engineering is also known as operations management, management science, systems engineering, or manufacturing engineering; a distinction that seems to depend on the viewpoint or motives of the user. Recruiters or educational establishments use the names to differentiate themselves from others. In healthcare, for example, industrial engineers are more commonly known as management engineers or health systems engineers.The term "industrial" in industrial engineering can be misleading. While the term originally applied to manufacturing, it has grown to encompass virtually all other industries and services as well. The various topics of concern to industrial engineers include management science, financial engineering, engineering management, supply chain management, process engineering, operations research, systems engineering, ergonomics, value engineering and quality engineering.Examples of where industrial engineering might be used include designing a new loan system for a bank, streamlining operation and emergency rooms in a hospital, distributing products worldwide (referred to as Supply Chain Management), and shortening lines (or queues) at a bank, hospital, or a theme park. Industrial engineers typically use computer simulation, especially discrete event simulation, for system analysis and evaluation.
Power engineering, also called power systems engineering, is a subfield of engineering that deals with the generation, transmission and distribution of electric power as well as the electrical devices connected to such systems including generators, motors and transformers. Although much of the field is concerned with the problems of three-phase AC power - the standard for large-scale power transmission and distribution across the modern world - a significant fraction of the field is concerned with the conversion between AC and DC power as well as the development of specialised power systems such as those used in aircraft or for electric railway networks.Electricity became a subject of scientific interest in the late 17th century with the work of William Gilbert. Over the next two centuries a number of important discoveries were made including the incandescent lightbulb and the voltaic pile. Probably the greatest discovery with respect to power engineering came from Michael Faraday who in 1831 discovered that a change in magnetic flux induces an electromotive force in a loop of wire—a principle known as electromagnetic induction that helps explain why generators and transformers work.In 1881 two electricians built the world's first power station at Godalming in England. The station employed two waterwheels to produce an alternating current that was used to supply seven Siemans arc lamps at 250 volts and thirty-four incandescent lamps at 40 volts. However supply was intermittent and in 1882 Thomas Edison and his company, The Edison Electric Light Company, developed the first steam-powered electric power station on Pearl Street in New York City. The Pearl Street Station consisted of several generators and initially powered around 3,000 lamps for 59 customers. The power station used direct current and operated at a single voltage. Since the direct current power could not be easily transformed to the higher voltages necessary to minimise power loss during transmission, the possible distance between the generators and load was limited to around half-a-mile (800 m).
Modern automotive engineering is a branch of vehicle engineering, incorporating elements of mechanical, electrical, electronic, software and safety engineering as applied to the design, manufacture and operation of motorcycles, automobiles, buses and trucks and their respective engineering subsystems.Automotive engineers are involved in almost every aspect of designing cars and trucks, from the initial concepts right through to manufacturing them.
Broadly speaking, automotive engineers are separated into three main streams: product engineering, development engineering and manufacturing engineering.Product engineer (also called design engineer), that would design components/systems (i.e brake engineer and battery engineer). This engineer designs and tests a part, seeing that it meets all its requirements (i.e. the shock), performs as required, material meets desired durability and so on. Development engineer, that engineers the attributes of the automobile. This engineer may provide to the design engineer what spring rate he/she requires to provide the "ride" characteristics required for the automobile to perform as desired, etc. Manufacturing engineer, determines how to make it.In Toyota, for example, manufacturing engineering is regarded as a more prestigious career path than designing and developing the cars.
Telecommunications engineering or telecom engineering is a major field within electronic engineering. Telecom engineers come in a variety of different types from basic circuit designers to strategic mass developments. A telecom engineer is responsible for designing and overseeing the installation of telecommunications equipment and facilities, such as complex electronic switching systems to copper telephone facilities and fiber optics. Telecom engineering also overlaps heavily with broadcast engineering.Telecommunications is a diverse field of engineering including electronics, civil, structural, and electrical engineering as well as being a political and social ambassador, a little bit of accounting and a lot of project management. Ultimately, telecom engineers are responsible for providing the method that customers can get telephone and high speed data services.Telecom engineers use a variety of different equipment and transport media available from a multitude of manufacturers to design the telecom network infrastructure. The most common media, often referred to as plant in the telecom industry, used by telecommunications companies today are copper, coaxial cable, fiber, and radio.Telecom engineers are often expected, as most engineers are, to provide the best solution possible for the lowest cost to the company. This often leads to creative solutions to problems that often would have been designed differently without the budget constraints dictated by modern society. In the earlier days of the telecom industry massive amounts of cable were placed that were never used or have been replaced by modern technology such as fiber optic cable and digital multiplexing techniques.Telecom engineers are also responsible for keeping the records of the companies’ equipment and facilities and assigning appropriate accounting codes for purposes of taxes and maintenance. As telecom engineers responsible for budgeting and overseeing projects and keeping records of equipment, facilities and plant the telecom engineer is not only an engineer but an accounting assistant or bookkeeper and a project manager as well.
Biomedical engineering (BME) is the application of engineering principles and techniques to the medical field. It combines the design and problem solving skills of engineering with medical and biological sciences to improve healthcare diagnosis and treatment.Biomedical engineering has only recently emerged as its own discipline, compared to many other engineering fields; such an evolution is common as a new field transitions from being an interdisciplinary specialization among already-established fields, to being considered a field in itself.Much of the work in biomedical engineering consists of research and development, spanning a broad array of subfields (see below). Prominent biomedical engineering applications include the development of biocompatible prostheses, various diagnostic and therapeutic medical devices ranging from clinical equipment to micro-implants, common imaging equipment such as MRIs and EEGs, biotechnologies such as regenerative tissue growth, and pharmaceutical drugs & biopharmaceuticals.
Ideally, safety-engineers take an early design of a system, analyze it to find what faults can occur, and then propose safety requirements in design specifications up front and changes to existing systems to make the system safer. In an early design stage, often a fail-safe system can be made acceptably safe with a few sensors and some software to read them. Probabilistic fault-tolerant systems can often be made by using more, but smaller and less-expensive pieces of equipment.Far too often, rather than actually influencing the design, safety engineers are assigned to prove that an existing, completed design is safe. If a safety engineer then discovers significant safety problems late in the design process, correcting them can be very expensive. This type of error has the potential to waste large sums of money.The exception to this conventional approach is the way some large government agencies approach safety engineering from a more proactive and proven process perspective. This is known as System Safety. The System Safety philosophy, supported by the System Safety Society and many other organizations, is to be applied to complex and critical systems, such as commercial airliners, military aircraft, munitions and complex weapon systems, spacecraft and space systems, rail and transportation systems, air traffic control system and more complex and safety-critical industrial systems. The proven System Safety methods and techniques are to prevent, eliminate and control hazards and risks through designed influences by a collaboration of key engineering disciplines and product teams. Software safety is a fast growing field since modern systems functionality are increasingly being put under control of software. The whole concept of system safety and software safety, as a subset of systems engineering, is to influence safety-critical systems designs by conducting several types of hazard analyses to identify risks and to specify design safety features and procedures to strategically mitigate risk to acceptable levels before the system is certified.
The basic division of polymers into thermoplastics and thermosets helps define their areas of application. The latter group of materials includes phenolic resins, polyesters and epoxy resins, all of which are used widely in composite materials when reinforced with stiff fibres such as fibreglass and aramids. Since crosslinking stabilises the thermosetting matrix of these materials, they have physical properties more similar to traditional engineering materials like steel. However, their very much lower densities compared with metals makes them ideal for lightweight structures. In addition, they suffer less from fatigue, so are ideal for safety-critical parts which are stressed regularly in service.
Thermoplastics have relatively low tensile moduli, but also have low densities and properties such as transparency which make them ideal for consumer products and medical products. They include polyethylene, polypropylene, nylon, acetal resin, polycarbonate and PET, all of which are widely used materials.
Elastomers are polymers which have very low moduli and show reversible extension when strained, a valuable property for vibration absorption and damping. They may either be thermoplastic (in which case they are known as Thermoplastic elastomers) or crosslinked, as in most conventional rubber products such as tyres. Typical rubbers used conventionally include natural rubber, nitrile rubber, polychloroprene, polybutadiene, styrene-butadiene and fluorinated rubbers such as Viton.
Sales process engineering has been described as “the systematic application of scientific and mathematical principles to achieve the practical goals of a particular sales process"[1]. Selden pointed out that in this context, sales referred to the output of a process involving a variety of functions across an organization, and not that of a “sales department” alone. Primary areas of application span functions including sales, marketing, and customer service. Variations of this brief description are possible, but described as such, the discipline is consistent with other published definitions of engineering and its many well-established branches, but relatively new in its focus.W. Edwards Deming alluded to sales, marketing and customer service processes in his famous “Production Viewed As a System” diagram, when he included the terms “Distribution,” “Consumers,” “Consumer research,” and “Design and redesign” in his flow chart . However, Deming himself, and many other recent thought leaders in the field of quality and process improvement, such as Joseph Juran, Shigeo Shingo, Taiichi Ohno, and Eliyahu Goldratt primarily focused on aspects related to production and logistics in the arena of manufacturing.
Mining engineering is an engineering discipline that involves the practice, the theory, the science, the technology, and application of extracting and processing minerals from a naturally occurring environment. Mining engineering also includes processing minerals for additional value.The need for mineral extraction and production is an essential activity of modern society. Mining activities by their nature cause a disturbance of the environment in and around which the minerals are located. Modern mining engineers must therefore be concerned not only with the production and processing of mineral commodities, but also with the mitigation of damage or to the environment as a result of that production and processing.Since the beginning of civilization people have used stone, ceramics and, later, metals found on or close to the Earth's surface. These were used to manufacture early tools and weapons. For example, high quality flint found in northern France and southern England were used to set fire and break rock. Flint mines have been found in chalk areas where seams of the stone were followed underground by shafts and galleries. The oldest known mine on archaeological record is the "Lion Cave" in Swaziland. At this site, which by radiocarbon dating proves the mine to be about 43,000 years old, paleolithic humans mined mineral hematite, which contained iron and was ground to produce the red pigment ochre.
Mining engineering is an engineering discipline that involves the practice, the theory, the science, the technology, and application of extracting and processing minerals from a naturally occurring environment. Mining engineering also includes processing minerals for additional value.The need for mineral extraction and production is an essential activity of modern society. Mining activities by their nature cause a disturbance of the environment in and around which the minerals are located. Modern mining engineers must therefore be concerned not only with the production and processing of mineral commodities, but also with the mitigation of damage or to the environment as a result of that production and processing.Since the beginning of civilization people have used stone, ceramics and, later, metals found on or close to the Earth's surface. These were used to manufacture early tools and weapons. For example, high quality flint found in northern France and southern England were used to set fire and break rock.Flint mines have been found in chalk areas where seams of the stone were followed underground by shafts and galleries. The oldest known mine on archaeological record is the "Lion Cave" in Swaziland. At this site, which by radiocarbon dating proves the mine to be about 43,000 years old, paleolithic humans mined mineral hematite, which contained iron and was ground to produce the red pigment ochre.
Textile engineering (TE) or textile technology deals with the application of scientific and engineering principles to the design and control of all aspects of fiber, textile, and apparel processes, products, and machinery. These include natural and man-made materials, interaction of materials with machines, safety and health, energy conservation, and waste and pollution control. Additionally, textile engineers are given training and experience in plant design and layout, machine and wet process design and improvement, and designing and creating textile products.The courses taken in a typical TE degree program include Textile Engineering Systems, Textile Engineering Design, Mechanics of Fibrous Structures, Textile Engineering Quality Improvement, Textile Information Systems Design, Polymer Engineering, Polymeric Biomaterials Engineering, Mechanics of Tissues & Implants Requirements, Fabric Building Mechanisms, Special Topics in Textile Engineering, Dynamics of Fabric Production Systems, Textile Composites, Polymeric Biomaterials Engineering, Industrial Textiles, Textile Applications in Medicine, Engineering Economics, Basic Electronics of Textile Manufacturing and Quality Testing Machinery, Dyeing, Printing and other methods of textile coloration, and Industrial Planning and Organization (Moi University, 1991).
Power engineering, also called power systems engineering, is a subfield of engineering that deals with the generation, transmission and distribution of electric power as well as the electrical devices connected to such systems including generators, motors and transformers. Although much of the field is concerned with the problems of three-phase AC power - the standard for large-scale power transmission and distribution across the modern world - a significant fraction of the field is concerned with the conversion between AC and DC power as well as the development of specialised power systems such as those used in aircraft or for electric railway networks.Electricity became a subject of scientific interest in the late 17th century with the work of William Gilbert.Over the next two centuries a number of important discoveries were made including the incandescent lightbulb and the voltaic pile.Probably the greatest discovery with respect to power engineering came from Michael Faraday who in 1831 discovered that a change in magnetic flux induces an electromotive force in a loop of wire—a principle known as electromagnetic induction that helps explain why generators and transformers work
Software engineering is the application of a systematic, disciplined, quantifiable approach to the development, operation, and maintenance of software, and the study of these approaches; that is, the application of engineering to software.The term software engineering first appeared in the 1968 NATO Software Engineering Conference and was meant to provoke thought regarding the current "software crisis" at the time. Since then, it has continued as a profession and field of study dedicated to creating software that is of higher quality, more affordable, maintainable, and quicker to build. Since the field is still relatively young compared to its sister fields of engineering, there is still much debate around what software engineering actually is, and if it conforms to the classical definition of engineering. It has grown organically out of the limitations of viewing software as just programming. "Software development" is a much used term in industry which is more generic and does not necessarily subsume the engineering paradigm. Although it is questionable what impact it has had on actual software development over the last more than 40 years, the field's future looks bright according to Money Magazine and Salary.com who rated "software engineering" as the best job in America in 2006.
Sewage is created by residences, institutions, hospitals and commercial and industrial establishments. Raw influent (sewage) includes household waste liquid from toilets, baths, showers, kitchens, sinks, and so forth that is disposed of via sewers. In many areas, sewage also includes liquid waste from industry and commerce.The separation and draining of household waste into greywater and blackwater is becoming more common in the developed world, with greywater being permitted to be used for watering plants or recycled for flushing toilets. A lot of sewage also includes some surface water from roofs or hard-standing areas. Municipal wastewater therefore includes residential, commercial, and industrial liquid waste discharges, and may include stormwater runoff. Sewage systems capable of handling stormwater are known as combined systems or combined sewers. Such systems are usually avoided since they complicate and thereby reduce the efficiency of sewage treatment plants owing to their seasonality. The variability in flow also leads to often larger than necessary, and subsequently more expensive, treatment facilities. In addition, heavy storms that contribute more flows than the treatment plant can handle may overwhelm the sewage treatment system, causing a spill or overflow (called a combined sewer overflow, or CSO, in the United States). It is preferable to have a separate storm drain system for stormwater in areas that are developed with sewer systems.
Petroleum engineering is an engineering discipline concerned with the subsurface activities related to the production of hydrocarbons, which can be either crude oil or natural gas. These activities are deemed to fall within the upstream sector of the oil and gas industry, which are the activities of finding and producing hydrocarbons. (Refining and distribution to a market are referred to as the downstream sector.) Exploration, by earth scientists, and petroleum engineering are the oil and gas industry's two main subsurface disciplines, which focus on maximizing economic recovery of hydrocarbons from subsurface reservoirs. Petroleum geology and geophysics focus on provision of a static description of the hydrocarbon reservoir rock, while petroleum engineering focuses on estimation of the recoverable volume of this resource using a detailed understanding of the physical behavior of oil, water and gas within porous rock at very high pressure.